
R300 – Advanced Econometric Methods

PROBLEM SET 7 - SOLUTIONS

Due on Mon. November 30

1. Consider the linear instrumental-variable model (in matrix notation)

y = Xθ + ε

with more instruments then covariates. You may assume that ε is homoskedastic through-

out.

You want to test the null hypothesis that θ = 0 against the two-sided alternative that

θ 6= 0.

Set up the Wald, LR-type, and LM-type test statistics for this null and show that they are

all numerically equivalent to each other here.

Let θ̂ be the unconstrainted optimal GMM estimator which equals

θ̂ = (X ′PZX)−1(X ′PZy), PZ = Z(Z ′Z)−1Z,′

that is, 2SLS. For the sequel, also define the matrix that projects on PZX, i.e.,

P PZX = PZX(X ′PZX)−1X ′PZ ,

and

ε̂ = y −X θ̂, σ̂2 = ε̂′ε̂/n,

that is, the residuals and the residual variance.

(i) The Wald statistic is

θ̂′(X ′PZX) θ̂

σ̂2
=

y′PZX(X ′PZX)−1X ′PZy

σ̂2
=

y′P PZXy

σ̂2
.
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(ii) The LR statistic is

y′PZy

σ̂2
− ε̂′PZ ε̂

σ̂2
=

(X θ̂ + ε̂)′PZ(X θ̂ + ε̂)

σ̂2
− ε̂′PZ ε̂

σ̂2

=
θ̂′X ′PZX θ̂ + 2 θ̂′X ′PZ ε̂

σ̂2

=
θ̂′X ′PZX θ̂ + 2 θ̂′X ′PZy − 2 θ̂′X ′PZX θ̂

σ̂2

=
y′P PZXy

σ̂2
.

(iii) The LM statistic is

y′PZX(X ′PZX)−1X ′PZy

σ̂2
=

y′P PZXy

σ̂2
.

So, indeed, all three statistics are the same.

.

2. Consider the simple binary-choice model

y = {xiβ ≥ vi},

where xi is a scalar continuous regressor. The complication is that xi is not independent

of ui. Moreover, we have

xi = ziγ + ui,

and (
vi
ui

)
∼ N

( (
0
0

)
,

(
1 ρσu
ρσu σ2

u

) )
,

and these errors are independent of zi ∼ N(0, 1).

(i) Derive an expression for E(yi|xi, ui).

(ii) Suppose that you would observe ui in the data. How could you use your answer to (i)

to estimate the parameters of the model?

(iii) Derive an expression for the linear instrumental-variable estimand in this model. That

is, compute cov(yi, zi)/cov(xi, zi). Is this a meaningful quantity to estimate? In answering

this you may find it useful to know that∫ +∞
−∞xΦ(a+ bx)φ(x) dx = b√

1+b2
φ
(

a√
1+b2

)
,

∫ +∞
−∞Φ(a+ bx)φ(x) dx = Φ

(
a√
1+b2

)
,
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for constants a and b.

.

(i) By joint normality of the errors,

vi|ui ∼ N(ρ/σuui, (1− ρ2)).

Hence,

P (yi = 1|xi, ui) = P (vi ≤ xiβ|xi, ui) = Φ

(
xiβ − ρ/σuui√

1− ρ2

)
.

(ii) If ui is observed the likelihood function would be

∏
i

Φ

(
xiβ − ρ/σuui√

1− ρ2

)yi (
1− Φ

(
xiβ − ρ/σuui√

1− ρ2

))1−yi

,

which can be maximized with respect to the parameters to get an efficient estimator.

In practice, a feasible version leads to a two-step procedure where, first, we estimate ui by

the residual of a least-squares regression of xi on zi (say ûi) and, second, proceed as before

with ûi/σ̂u replacing ui/σu. (Note that this replacement requires an adjustment to the usual

standard errors in order to yield valid inference!) This estimator is frequently referred to as

the Rivers-Vuong estimator. It is an example of what is known as a control-function esti-

mator. Two other examples of such a procedure are Heckman’s sample-selection estimator

(Heckit or Heckman in Stata depending on your version) and, yes, two-stage least squares.

In Stata the command for the Rivers-Vuong estimator is called (somewhat unfortunately)

ivprobit.

(iii) We need to calculate

cov(zi, yi) = E

(
zi Φ

(
zi(γβ)√

1− ρ2 + (βσu − ρ)2

))
=

γβ√
1− ρ2 + (βσu − ρ)2 + (γβ)2

φ(0)

and

cov(zi, xi) = γ.

The IV estimand is, therefore,

βIV =
β√

1− ρ2 + (βσu − ρ)2 + (γβ)2
φ(0).
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This quantity does not have an obvious meaningful interpretation. When xi is independent

of vi (when ρ = 0) it would (at least in this design) co-incide with the average marginal

effect.

The marginal effect we would be interested in would an expected change for an exogenous

change in xi. Because xi is endogenous this is not ∂E(yi|xi)/∂xi. Conditional on ui,

however, variation in xi = x is exogenous and so we could consider recovering the average

marginal effect for a given xi as∫
∂E(yi|xi, u)

∂xi

∣∣∣∣
xi=x

φ(u/σi)/σu du

and the average of these (over the regressor) as

E

(∫
∂E(yi|xi, u)

∂xi

∣∣∣∣
xi=x

φ(u/σi)/σu du

)
.

With some additional calculation efforts we can verify that this average marginal effect is

β√
1 + β2(γ2 + σ2

u)
φ(0).

.

3. Now suppose that

yi = β0 + xiβ1 + vi, xi =

{
1 if ziγ ≥ ui
0 if ziγ < ui

,

where (
vi
ui

)
∼ N

( (
0
0

)
,

(
σ2
v ρσv

ρσv 1

) )
,

and these errors are independent of zi ∼ N(0, 1). We observe a random sample on (yi, xi, zi).

(i) Show that xi is endogenous unless ρ = 0 by computing E(xivi). In answering this you

may again find it useful to know that∫ +∞
−∞xΦ(a+ bx)φ(x) dx = b√

1+b2
φ
(

a√
1+b2

)
,

∫ +∞
−∞Φ(a+ bx)φ(x) dx = Φ

(
a√
1+b2

)
,

for constants a and b.

(ii) Derive conditions on the parameters in the model for zi to be a relevant instrument.

(iii) Discuss how the strength of the instrument varies as a function of the parameters of

the model.
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(i) We have

E(xivi) = E({ziγ ≥ ui} vi)

= E

(
Φ

(
ziγ − ρ/σvvi√

1− ρ2

)
vi

)

= E

(∫ +∞

∞
(v/σv)Φ

(
ziγ√
1− ρ2

− ρ√
1− ρ2

v/σv

)
φ(v/σv) dv

)

= −ρσv
∫ +∞

−∞
φ(zγ)φ(z) dz

= − ρσv√
1 + γ2

φ(0).

The severity of the endogeneity as a function of the parameters ρ, σv, and γ is intuitive.

Stronger correlation between the errors and a smaller signal-to-noise ratio in yi both increase

E(xivi) (in magnitude). A stronger signal to noise ratio in xi on the other hand reduces

E(xivi) (in magnitude).

(ii) We look at the reduced form

xi = δ0 + ziδ1 + εi,

where

δ1 =
cov(zi, xi)

var(zi)
= E(zixi),

with the last transition being a consequences of zi ∼ N(0, 1). We calculate

δ1 = E(zi{ziγ ≥ ui}) = E (zi Φ(ziγ)) =
∫ +∞
−∞zΦ(zγ)φ(z) dz =

γ√
1 + γ2

φ(0).

So, δ1 6= 0 is equivalent to γ 6= 0. This is intuitive. It states that zi will be a relevant

instrument if it affects xi. This can be tested by comparing the t-statistic for the null that

δ1 = 0 (against the alternative H1 : δ1 6= 0) against the quantiles of the standard normal

distribution.

Validity of the instrument follows from the fact that it is excluded from the structural

equation for yi and it is independent of vi. Because we only have one instrument here the

parameters are just identified and we cannot formally test this exclusion restriction on zi.

(iii) The function γ/
√

1 + γ2 is increasing in |γ| and symmetric around zero. Its lower

and upper limits are −1 and 1, respectively. Hence, δ1 will reach its maximum magnitude
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as |γ| → ∞. The relation between γ and δ1 is again intuitive. Note also that the DGP

restricts δ1 ∈ [−1, 1]. This makes sense, as larger γ increase the correlation between xi and

sign(zi).

The standard deviation of δ1 when estimated is

n−1/2 σε/σz = σε/
√
n.

The concentration parameter is

π = δ21
∑
i

z2i /σ
2
ε

a∼ δ21/(σ
2
ε/n) = δ21/var(δ̂1).

So for a given δ1 value the instrument will be stronger when the signal to noise ratio in x

is larger or (equivalently) when δ1 is estimated more precisely.

.

4. Continue with the setup from the previous question.

(i) Your colleague who has not taken this course says that you should not use 2SLS here.

His argument is that, because the variable xi is discrete, a linear probability model that

decomposes xi = x̂i + ε̂i by least squares gives an incorrect specification of E(xi|zi) and so

the resulting 2SLS estimator, ∑
i(x̂i − x)(yi − y)∑

i(x̂i − x)2

will be inconsistent. Do you agree? Explain.

(ii) Our model implies that

E(vi|zi) = 0.

Derive the optimal moment condition implied by this to estimate β.

(iii) In the previous question you provided a function ϕ(zi) for which

E(ϕ(zi) vi) = 0.

In practice you will have to estimate this function ϕ. How would you proceed here?

.

(i) It is correct that the conditional mean function E(xi|zi) must be nonlinear in zi in

this case. However, 2SLS does not require you to estimate this conditional mean. Indeed,

2SLS requires you to decompose xi into two blocks: one (x̂i) being a function of zi that

contains the exogenous variation in xi, the other an orthogonal part (ε̂i) that contains the

[6]



endogenous variation in xi. This is exactly what least squares does for you independent of

the nature of xi.

(ii) The optimal unconditional moment condition (up to sign) here is

E(ϕ(zi) vi) = 0, ϕ(zi) =

(
1

E(xi|zi)

)
E(v2i |zi)−1.

Given that E(xi|zi) = Φ(ziγ) and that vi is independent of zi with variance σ2
v the optimal

moment condition becomes

E

((
1

Φ(ziγ)

)
(yi − β0 − xiβ1)

σ2
v

)
= 0

The covariance matrix of these moment conditions is(
1 E(Φ(ziγ))/σ2

v

E(Φ(ziγ))/σ2
v E(Φ(ziγ)2)/σ2

v

)
and the asymptotic variance of the optimal estimator equals the inverse of this matrix.

(iii) We proceed in multiple steps:

1. Estimate a probit model (by maximum likelihood) for xi given zi to get an estimate

of γ, say γ̂.

2. Run an instrumental-variable estimator with instruments 1 and Φ(ziγ̂)—or, indeed,

any other valid instrument; any transformation of zi would suffice here—to obtain a

first-step consistent estimator of β = (β0, β1)
′ and use these to construct the residuals

v̂i.

3. Estimate σ2
v by the sample variance of the v̂i and run a new instrumental-variable

estimator, now using instruments 1/σ̂2
v and Φ(ziγ̂)/σ̂2

v .

.
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